Abstract

Laccase is an important enzyme used in many industries because of its multi-substrate catalyst. New immobilization agents are excellent tools for enhancing the abilities of this enzyme. In this study, immobilization of laccase on silica microparticles with NH2 (S-NH2) surface modification to use in dye removal applications was aimed. The yield of immobilization by this method was found to be 93.93 ± 2.86% under optimum conditions. In addition, this newly created immobilized enzyme was adapted to a decolorization application with 87.56 ± 1.60% efficiency. Silica microparticles with NH2 (S-NH2) surface modification were used for laccase immobilization and this immobilized laccase had quite good potential. Besides, Random Amplified Polymorphic DNA (RAPD) analysis in evaluating the toxicity of the decolorization process was utilized. After amplification with two RAPD primers, decreased toxicity of dye in this study was observed. This study showed that RAPD analysis in toxicity testing could be accepted as an alternative and practical method that this approach will contribute to the literature in terms of providing fast and reliable results. The use of amine-modified surface silica microparticles for laccase immobilization and RAPD for toxicity testing is a crucial aspect of our investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call