Abstract
Adsorption of a cationic dye, cresyl violet, on SnO2 and SiO2 nanoclusters and nanocrystalline thin films results in the formation of H-aggregates. These dyes are photochemically and electrochemically active and extend the photoresponse of large bandgap semiconductors such as SnO2. Photocurrent generation in dye capped nanocrystalline films of SnO2 has been demonstrated with visible light excitation. A photon-to-photocurrent generation efficiency around 1% has been observed at 510 nm. Back electron transfer between the photoinjected electron and the oxidized sensitizer plays an important role in controlling the efficiency of net electron transfer. Transient absorption and microwave absorption measurements of the dye aggregate capped SnO2 films suggest that the back electron transfer is multiexponential and most is completed within a few hundred nanoseconds. The activation energy of the back electron transfer process is very low (∼1.7 kJ/mol).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.