Abstract

Doxorubicin (DOX) is a potent anticancer agent that binds both DNA and cardiolipin (CL). To investigate DOX binding to CL versus DNA, aqueous soluble, CL-enriched nanoparticles, termed nanodisks (ND), were employed. Upon incubation with CL-ND, but not with phosphatidylcholine ND, DOX binding was detected. DOX binding to CL-ND was sensitive to buffer pH and ionic strength. To investigate if a DOX binding preference for DNA versus CL-ND exists, an agarose gel-based dye binding assay was developed. Under conditions wherein the commercial fluorescent dye, GelRed, detects a 636 bp DNA template following electrophoresis, DOX staining failed to visualize this DNA band. Incubation of the template DNA with DOX prior to electrophoresis resulted in a DOX concentration-dependent attenuation of GelRed staining intensity. When the template DNA was pre-incubated with equivalent amounts of free DOX or DOX-CL-ND, no differences in the extent of GelRed staining intensity attenuation were noted. When DOX was incubated with DNA alone, or a mixture of DNA and CL-ND, the extent of DOX-induced GelRed staining intensity attenuation was equivalent. Thus, DOX has a binding preference for DNA versus CL and, moreover, DOX-CL-ND offer a potential strategy to prevent DOX-induced cardiotoxicity while not affecting its affinity for DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.