Abstract

Fucoidan is a sulfated polysaccharide with promising pharmacological applications. Due to its medicinal properties, there is a demand for a separation technique that yields a high purification grade. Here, we present a novel purification tool for recovering fucoidan from the marine brown macroalgae Fucus vesiculosus. The developed method is based on amino‐derivatized Sepabeads® EC‐EA. The beads were modified with toluidine blue (TB), a thiazine derivative, to exploit the strong donor acceptor interactions between the cationic dye and the anionic polysaccharide. The adsorption kinetics and the binding capacity of the resin were analyzed. A Sips model was used to approximate the adsorption isotherm, resulting in a maximum capacity of 127.7 mg fucoidan per g adsorbent. Investigation of the effect of adsorption step's pH on purity and chemical structure was performed by TB and Fourier transform infra‐red spectroscopy assays. Results showed that adsorption at pH 1 and 6 had negligible effects on fucoidan's chemical structure. However, purity was actually improved by 1.55‐ and 1.69‐fold at pH 1 and 6, respectively, with an average yield of 5 g/100 g dried algae powder. In contrast, only a 1.46‐fold increment was observed in fucoidan purified by the traditional method at pH 2, with a yield of 7.5 g/100 g dried algae powder. Furthermore, fucoidan purified by this method at pH 6 complies with, or even exceeds the quality of the commercially available (≥95% pure) fucoidan (Sigma‐Aldrich®) with respect to molecular weight and sulfur content. Therefore, dye affinity chromatography provides more advantages than the classically used techniques for fucoidan purification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call