Abstract
Dyakonov–Tamm (DT) waves are highly sensitive to the constitutive properties of the partnering materials near the interface. DT waves are excited at the interface of two dielectric materials of which at least one is anisotropic and periodically nonhomogeneous normal to their interface. Sculptured nematic thin film (SNTF) is a good candidate for the periodically nonhomogeneous dielectric partner for optical sensing of a fluid due to its porosity. The nanoscale parameters of an uninfiltrated SNTF obtained from the inverse Bruggeman homogenization formalism were used in the forward Bruggeman homogenization formalism to determine the constitutive parameters for the infiltrated SNTF. The sensitivity of DT waves to the refractive index was analyzed for two possible sensing modalities and it was found that the sensitivity was comparable to that of the chiral sculptured thin films (STFs) made of the same material as of the SNTF. This implies that the sensing with DT waves is robust, is independent of the morphology of the partnering nonhomogeneous dielectric material and could make the sensing easier since SNTFs are easier to fabricate than the chiral STFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.