Abstract
The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and |detA| = 2) wavelet multipliers in twodimensional case were completely characterized by Wutam Consortium (1998) and Li Z., et al. (2010). But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation matrix with the absolute value of determinant not 2 in L 2(ℝ2). In this paper, we choose $2I_2 = \left( {\begin{array}{*{20}c} 2 & 0 \\ 0 & 2 \\ \end{array} } \right)$ as the dilation matrix and consider the 2I 2-dilation multivariate wavelet Φ = {ψ 1, ψ 2, ψ 3}(which is called a dyadic bivariate wavelet) multipliers. Here we call a measurable function family f = {f 1, f 2, f 3} a dyadic bivariate wavelet multiplier if $\Psi _1 = \left\{ {\mathcal{F}^{ - 1} \left( {f_1 \widehat{\psi _1 }} \right),\mathcal{F}^{ - 1} \left( {f_2 \widehat{\psi _2 }} \right),\mathcal{F}^{ - 1} \left( {f_3 \widehat{\psi _3 }} \right)} \right\}$ is a dyadic bivariate wavelet for any dyadic bivariate wavelet Φ = {ψ 1, ψ 2, ψ 3}, where $\hat f$ and F −1 denote the Fourier transform and the inverse transform of function f respectively. We study dyadic bivariate wavelet multipliers, and give some conditions for dyadic bivariate wavelet multipliers. We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.