Abstract
Dy- and Tb-doped CeO2-Ni cermets for highly active solid-oxide fuel-cell (SOFC) anodes were fabricated by a one-pot electrodeposition process. Undoped, singly-doped, and co-doped powders were synthesized in an X-ray amorphous state, heat treated in air, and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) at different crystallization stages. In particular, in situ TEM analyses were carried out during heating in an oxygen atmosphere, in order to follow the evolution of structure and morphology and to understand the role of the dopants. The key structural effect of dopants was the inhibition of grain coarsening during heat treatment. Functional tests were carried out with micro-single chamber SOFCs, fed with a CH4/O2 mixture, the anodes of which were prepared with the CeO2-Ni powders synthesized in this study. A correlation was established between the electrocatalytic performance and the morphology of the anodic material, pinpointing that the finer and more homogeneous nanocrystalline structure of the doped powders results in better-defined and more active catalytic sites, thus improving the performance of the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.