Abstract

ABSTRACTThe presence of DX centers in InxAl1−xAs, primarily in the indirect portion of the InxAl1−xAs bandgap, has been determined using modulation doped InxAl1−xAs/InyGa1−yAs heterostructures by means of persistent photoconductivity (PPC) and galvanomagnetic measurements. From the cooling bias experiment, the PPC, and self consistent Poisson and Schrddinger simulations the ratio of the ionized shallow donors to the DX centers is obtained. Using this ratio in the grand canonical ensemble (GCE) the energy level of DX centers is determined. It is found that the DX energy level merges with the conduction band at x ≅ 0.42 and is resonant with the conduction band in higher indium concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call