Abstract

In the study of detection of an epileptic seizure using Electroencephalogram (EEG), pattern recognition has been recognized as a valued tool. In this pattern recognition study, the first time the authors have attempted to use time domain (TD) features such as waveform length (WL), number of zero-crossings (ZC) and number of slope sign changes (SSC) derived directly from filtered EEG data and from discrete wavelet transform (DWT) of filtered EEG data for the detection of an epileptic seizure. Further, the authors attempted to study the performance of other time domain features such as mean absolute value (MAV), standard deviation (SD), average power (AVP), which had been attempted by other researchers. The performance of the TD features is studied using naive Bayes (NB) and support vector machines (SVM) classifiers for the university of Bonn database with fourteen different combinations of set E with set A to D. The proposed scheme was also compared with other existing scheme in the literature. The implementation results showed that the proposed scheme could attain the highest accuracy of 100% for normal eyes open and epileptic data set with direct as well as DWT based TD features. For other data sets, the highest accuracy is obtained with DWT based TD features using SVM. However, no significant difference in the classification of 14 data sets with TD features filtered EEG data and from DWT of filtered EEG data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.