Abstract
This chapter presents the core of the DWFIST approach, which is concerned with supporting the analysis and exploration of frequent itemsets and derived patterns, e.g., association rules in transactional datasets. The goal of this new approach is to provide: (1) flexible pattern-retrieval capabilities without requiring the original data during the analysis phase; and (2) a standard modeling for data warehouses of frequent itemsets, allowing an easier development and reuse of tools for analysis and exploration of itemset-based patterns. Instead of storing the original datasets, our approach organizes frequent itemsets holding on different partitions of the original transactions in a data warehouse that retains sufficient information for future analysis. A running example for mining calendar-based patterns on data streams is presented. Staging area tasks are discussed and standard conceptual and logical schemas are presented. Properties of this standard modeling allow retrieval of frequent itemsets holding on any set of partitions, along with upper and lower bounds on their frequency counts. Furthermore, precision guarantees for some interestingness measures of association rules are provided as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.