Abstract

Silica gels doped with double-walled carbon nanotubes (DWCNTs) were prepared using an aqueous sol–gel route in mild conditions (neutral pH, room temperature). The wet gels exhibited both ionic and electronic conduction. Electrochemical impedance spectroscopy was used to study these two different conduction pathways that prevail at different characteristic time scales. The ionic conduction in the silica network was found to be independent of the DWCNT-doping rate. The electronic conduction through the DWCNT network was found to occur above a critical concentration (0.175 wt %) corresponding to nanotube percolation threshold. The highest content in DWCNTs (0.8 wt %) exhibited a conductivity of 0.05 S/m. Furthermore, the DWCNTs network was found to evolve even after the macroscopic solidification of the gel, suggesting a reorganization of the DWCNTs at the molecular level. This phenomenon could be attributed to the polarization effect of the electrode and was confirmed by Raman spectroscopy studies. Such materials can be useful for the design of sensors incorporating electroactive chemical or biological species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.