Abstract

Dwarf spheroidal satellite galaxies have emerged a powerful probe of small-scale dark matter clustering and of cosmic reionization. They exhibit structural and chemical continuity with dwarf irregular galaxies in the field and with spheroidal galaxies in high-density environments. By combining empirical constraints derived for star formation at low gas column densities and metallicities in the local universe with a model for dark matter and baryonic mass assembly, we provide an analytical description of how the dwarf spheroidals acquired their stellar content. Their progenitors formed stars until the gas content, initially reduced from the cosmic average by the thermal pressure of the reionized intergalactic medium, was finally ram pressure stripped during the progenitors' accretion on to the host galaxy. Dwarf spheroidal satellites of differing luminosities seem to share very similar most massive progenitor histories that reach thresholds for gas cooling by atomic line emission at epochs at which the Lagrangian volume of the Local Group should have been reionized. We hypothesize that dwarf spheroidals formed the bulk of their stars in partially rotationally supported HI disks in a reionized universe. This model provides an explanation for the "common mass scale" relation and reproduces the empirical luminosity-size and luminosity-metallicity relations. Explosive feedback phenomena, such as outflows driven by the concerted action of supernovae, need not have been significant in the dwarf spheroidals' formation. We further speculate that the true pre-reionization fossils should exhibit a structure distinct from that of the dwarf spheroidals, e.g., in the form of dense isolated or nuclear star clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call