Abstract
In this paper we propose a novel method called s-DVO for dense visual odometry using a probabilistic sensor noise model. In contrast to sparse visual odometry, where camera poses are estimated based on matched visual features, we apply dense visual odometry which makes full use of all pixel information from an RGB-D camera. Previously, t-distribution was used to model photometric and geometric errors in order to reduce the impacts of outliers in the optimization. However, this approach has the limitation that it only uses the error value to determine outliers without considering the physical process. Therefore, we propose to apply a probabilistic sensor noise model to weigh each pixel by propagating linearized uncertainty. Furthermore, we find that the geometric errors are well represented with the sensor noise model, while the photometric errors are not. Finally we propose a hybrid approach which combines t-distribution for photometric errors and a probabilistic sensor noise model for geometric errors. We extend the dense visual odometry and develop a visual SLAM system that incorporates keyframe generation, loop constraint detection and graph optimization. Experimental results with standard benchmark datasets show that our algorithm outperforms previous methods by about a 25% reduction in the absolute trajectory error.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.