Abstract
The safety and effectiveness of hydrogen storage are important factors in supporting the utilization of hydrogen as fuel. One of the MOFs materials might be potentially used for hydrogen storage is MOF based on Al3+ including ([Al(OH)BPDC]) (BPDC: 4,4′-biphenyl dicarboxylic acid) which well known as Dresden University of Technology (DUT-5). This study aims to investigate the influence of Pd metal nanoparticles embedded into DUT-5 with a variation: 1 and 5 wt% toward the structural feature and hydrogen sorption properties. According to XRD and FTIR spectroscopy, nitrogen sorption isotherm and SEM-EDX analysis, the basic structure of DUT-5 were partially decomposed after the impregnation process. TEM analysis showed Pd nanoparticles were well dispersed into DUT-5. Nitrogen sorption isotherm revealed that Pd loading into DUT-5 lead to decrease surface area and pore volume of DUT-5 up to 85.82%. Based on thermogravimetry analysis, thermal stability of the material did not change after impregnation. Hydrogen sorption measurement revealed the presence of Pd is not able to increase hydrogen storage capacity of DUT-5 due to the framework destruction, however, in Pd/DUT-5 materials, the increasing of Pd concentration can increase the hydrogen storage capacity which might be due to a spillover effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.