Abstract

Geological active south-pole fractures of the icy moon Enceladus produce a specific region, a so-called plume that extends up to 1000 km into space. The main constituents of the plume are electrons, ions, water molecules, and charged nanograins, which are responsible for the unusual properties of this kind of low-temperature dusty plasma. The examples discussed represent our results in this field within the last few years, and mostly such cases were chosen, in which measurements of different Cassini instruments could be compared with theory or where the phenomenon has a diagnostic application. Dust charging, role of dust size distributions and dust charge fluctuations are discussed. The findings are used for interpretations of the Cassini Plasma Spectrometer data and improve constraints on the dust characteristics. Then the main forces and dust dynamics are discussed in conditions relevant for the near-Enceladus plasma. It is also examined how the charged dust can affect the plasma shielding length which is of importance for the reliable Cassini Langmuir probe measurements. Considering the dust grains as heavy negative ion species, the electric conductivity tensor is modified, whose elements are the key quantities for understanding the magnetic field perturbations registered by the Cassini Magnetometer during Enceladus flybys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call