Abstract

A theoretical model that provides a self-consistent description of the concentrations of photoelectrons and dust particles located over the illuminated part of the lunar surface is presented. The model takes account of the observation point location and the effects of production of photoelectrons at the surfaces of the Moon and dust particles, the dynamics of dust particles in the electric and gravitational fields, and the charging of dust particles through their interaction with the solar radiation photons, the solar wind electrons and ions, photoelectrons, etc. An expression that describes the distribution of photoelectrons over the illuminated part of the lunar surface is obtained. The size and elevation distributions of the charged dust particles located over the illuminated part of the lunar surface are calculated for different angles between the local normal and the direction to the Sun. It is shown that no substantial restrictions are imposed on the choice of the landing site for future lunar spacecraft missions aimed at studying the near-surface dust on the Moon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call