Abstract

The basic features of obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a three-component magnetized dusty plasma (containing inertial negatively as well as positively charged dust grains, and nonextensive ions) have been theoretically investigated. The reductive perturbation technique is employed in order to derive the Korteweg–de Vries (K–dV) equation. The stationary solitary wave solution of the K–dV equation, which describes the characteristics of SWs associated with ultra-low-frequency, long wavelength DA waves, is obtained and numerically analyzed. It is observed that the basic characteristics (polarity, amplitude, width, speed, etc) of the DA SWs are significantly modified by the effects of ion nonextensivity, external magnetic field, and angle between the directions of external magnetic field and wave propagation. The findings of this investigation may be used in understanding the wave propagation in space and laboratory plasmas in which dust of opposite polarity coexists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call