Abstract

Abstract Empirical studies of dust–surface collisions for metal and carbon projectiles impacting on metal targets in the velocity range from a few m/s to those in excess of 1 km/s have been carried out with the use of a modified pellet injection system. The selected projectile/target shapes, sizes and materials are mimicking the scenario of dust colliding with plasma facing components (PFCs) of a metal machine. The low velocities (10’s m/s) reported here, characteristic for dust motion in tokamak scrape-off layer plasmas, are in the range of sticking phenomenon; the critical velocity and size for bouncing off are essential and timely inputs for the dust dynamics codes and statistical models aiming to predict dust transport and redeposition on PFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.