Abstract

Dust storm originates from arid and semiarid areas and could cause worldwide lasting effects along varying trajectories. As an extreme weather hazard, dust storm is usually induced by strong winds. In this paper, an aerodynamic parameter, defined as the ratio between dust storm frequency (DSF) and strong wind frequency (SWF), was calculated for quantifying dust storm susceptibility (DSS). The characteristic value and temporal change of DSS in five typical land surface areas, including cultivated land, grassland, sand desert, Gobi desert, and salt crust, were analyzed with dust storm and strong wind records at 15 weather stations. The spatial distribution of DSS in the arid and semiarid regions of northern China was described using dust storm and strong wind records at 102 meteorological stations. There are positive correlations between SWF and DSF for any identical land surface type. Land surface conditions have a great influence on dust storm susceptibility. According to DSS value, the five land surface types can be divided into two categories: (1) Cultivated land and sand desert, with DSS between 0.64 and 0.53, about 2.6–10 times higher than that of the other three land surfaces, are prone to forming dust storm under strong wind conditions; (2) Gobi desert, grassland and salt crust, with average DSS from 0.06 to 0.2, exhibit lower probability of dust storm occurrence under strong wind conditions. The DSF in the surrounding areas of the arid Taklimakan desert in Xinjiang are much larger than SWF, and dust storms take place readily even at normal erosive wind conditions. The areas with high DSF are not spatially consistent with SWF distribution but more coincide with high DSS areas where sand deserts and farmland are concentrated. In the nearly four past decades, the DSS showed an overall increasing trend on different ground surfaces which may be related to local human activities and climatic warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.