Abstract

We investigate instability of dust drift waves in a nonuniform dusty magnetoplasma containing transverse sheared plasma flow that is produced by a nonuniform electric field. By using Boltzmann distributed electrons and ions, Poisson’s equation, as well as the dust continuity equation with perpendicular guiding center dust drift speed, we derive an eigenvalue equation, which strongly depends on the profiles of dust sheared flow and dust density gradient. The eigenvalue equation is analytically solved to obtain expressions for the growth rate and threshold of a convective instability arising from resonant interactions between the dust drift waves and sheared flows. The result may be relevant to the understanding of short wavelength (in comparison with the ion gyroradius) electrostatic fluctuations in magnetized plasmas of Saturn rings and in cometary tails.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call