Abstract
A parametric study inspired by daily human activities (e.g., shaking clothes) is presented in this paper. Dust resuspension from contaminated fabrics (with four levels of initial dust load: 1, 10, 20, and 30 g/m2) subjected to force-induced vibrations (with low frequencies ranging from 0 to 6 Hz) was experimentally investigated. It was found that different settings of vibration duration, vibration frequency, and initial dust load can lead to significant differences in the resuspension results. Flexible fabric motion and multilayer dust motion were demonstrated as major contributors through visualization experiments. The observed phenomena of acceleration amplification effect along the fabric and various particle-particle interactions provided a crucial basis for our reasonable assumptions in the mathematical description. A set of empirical correlations was therefore developed whose form was proposed to be applicable in a wide range of scenarios involving moving surfaces. This paper not only reveals an everyday event that can trigger particulate matter emissions, but also helps enrich the understanding of particle dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.