Abstract

Summary form only given. We propose a laser ablation method of generating high-pressure colloid plasma flows- UV laser ablation of a polymer matrix with a dust component introduced into it. The method is based on the difference in laser ablation spectral-energy thresholds of polymer materials and dust components in the short-wavelength spectral region. We studied the spatiotemporal dynamics and macrostructure of laser-induced colloid plasma flows and dust particles charge in them. Such conditions are possible under action of shortwave radiation (λ~213 nm) on easily ablating polymeric media ((C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> ) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> ) containing transparent dielectric particles (SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ). Electron concentration in plasma (n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> ~10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">18</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> ) and dust particle charge (z~1,5·10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</sup> e) achievable in this way enable us to carry out investigations in a previously unstudied range of parameters. The comparative analysis of the known data on the dust particle charge with those obtained in this work shows that there exists a dependence of the dust particle charge (z/R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) on the electron concentration in plasma carrier ranged n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> ~10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</sup> -10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">18</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> , which is close to that for the power (with the superscript exponent equal to ~0.25). This is of practical interest for solving a number of interesting problems arising in the development of different high power density plasma facilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call