Abstract

Context. The COmetary Secondary Ion Mass Analyzer (COSIMA) on board Rosetta is dedicated to the collection and compositional analysis of the dust particles in the coma of 67P/Churyumov-Gerasimenko (67P). Aims. Investigation of the physical properties of the dust particles collected along the comet trajectory around the Sun starting at a heliocentric distance of 3.5 AU. Methods. The flux, size distribution, and morphology of the dust particles collected in the vicinity of the nucleus of comet 67P were measured with a daily to weekly time resolution. Results. The particles collected by COSIMA can be classified according to their morphology into two main types: compact particles and porous aggregates. In low-resolution images, the porous material appears similar to the chondritic-porous interplanetary dust particles collected in Earth’s stratosphere in terms of texture. We show that this porous material represents 75% in volume and 50% in number of the large dust particles collected by COSIMA. Compact particles have typical sizes from a few tens of microns to a few hundreds of microns, while porous aggregates can be as large as a millimeter. The particles are not collected as a continuous flow but appear in bursts. This could be due to limited time resolution and/or fragmentation either in the collection funnel or few meters away from the spacecraft. The average collection rate of dust particles as a function of nucleo-centric distance shows that, at high phase angle, the dust flux follows a 1/ d 2 comet law, excluding fragmentation of the dust particles along their journey to the spacecraft. At low phase angle, the dust flux is much more dispersed compared to the 1/ d 2 comet law but cannot be explained by fragmentation of the particles along their trajectory since their velocity, indirectly deduced from the COSIMA data, does not support such a phenomenon. The cumulative size distribution of particles larger than 150 μ m follows a power law close to r − 0.8 ± 0.1 , confirming measurements made by another Rosetta dust instrument Grain Impact Analyser and Dust Accumulator (GIADA). The cumulative size distribution of particles between 30 μ m and 150 μ m has a power index of −1.9 ± 0.3. The excess of dust in the 10–100 μ m range in comparison to the 100 μ m–1 mm range together with no evidence for fragmentation in the inner coma, implies that these particles could have been released or fragmented at the nucleus right after lift-off of larger particles. Below 30 μ m, particles exhibit a flat size distribution. We interprete this knee in the size distribution at small sizes as the consequence of strong binding forces between the sub-constitutents. For aggregates smaller than 30 μ m, forces stronger than Van-der-Waals forces would be needed to break them apart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.