Abstract

We use the results of a set of three-dimensional SPH-Treecode simulations which model the formation and early evolution of disk galaxies, including the generation of heavy elements by star formation, to investigate the effects of dust absorption in quasar absorption line systems. Using a simple prescription for the production of dust, we have compared the column density, zinc abundance and optical depth properties of our models to the known properties of Damped Lyman alpha systems. We find that a significant fraction of our model galaxy disks have a higher column density than any observed DLA system. We are also able to show that such parts of the disk tend to be optically thick, implying that any background quasar would be obscured through much of the disk. This would produce the selection effect against the denser absorption systems thought to be present in observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call