Abstract

An evolutionary theoretical model is developed that describes dust ion-acoustic shock waves in dusty plasma consisting of ions (treated in the hydrodynamic approximation), Boltzmann electrons, and variable-charge dust grains. Account is taken not only of ionization, absorption, momentum loss by electrons and ions in collisions with dust grains, and gas-kinetic pressure effects but also of the processes peculiar to laboratory plasmas. It is shown that the model is capable of describing all the main experimental results on dust ion-acoustic shock waves [Q.-Z. Luo et al., Phys. Plasmas 6, 3455 (1999); Y. Nakamura et al., Phys. Rev. Lett., 83, 1602 (1999)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.