Abstract

We present infrared interferometric observations of the inner regions of two A-star debris disks, beta Leo and zeta Lep, using the FLUOR instrument at the CHARA interferometer on both short (30 m) and long (>200 m) baselines. For the target stars, the short baseline visibilities are lower than expected for the stellar photosphere alone, while those of a check star, delta Leo, are not. We interpret this visibility offset of a few percent as a near-infrared excess arising from dust grains which, due to the instrumental field of view, must be located within several AU of the central star. For beta Leo, the near-infrared excess producing grains are spatially distinct from the dust which produces the previously known mid-infrared excess. For zeta Lep, the near-infrared excess may be spatially associated with the mid-infrared excess producing material. We present simple geometric models which are consistent with the near and mid-infrared excess and show that for both objects, the near-infrared producing material is most consistent with a thin ring of dust near the sublimation radius with typical grain sizes smaller than the nominal radiation pressure blowout radius. Finally, we discuss possible origins of the near-infrared emitting dust in the context of debris disk evolution models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.