Abstract

The presence of dust at high redshift requires efficient condensation of grains in SN ejecta, in accordance with current theoretical models. Yet, observations of the few well studied SNe and SN remnants imply condensation efficiencies which are about two orders of magnitude smaller. Motivated by this tension, we have (i) revisited the model of Todini & Ferrara (2001) for dust formation in the ejecta of core collapse SNe and (ii) followed, for the first time, the evolution of newly condensed grains from the time of formation to their survival - through the passage of the reverse shock - in the SN remnant. We find that 0.1 - 0.6 M_sun of dust form in the ejecta of 12 - 40 M_sun stellar progenitors. Depending on the density of the surrounding ISM, between 2-20% of the initial dust mass survives the passage of the reverse shock, on time-scales of about 4-8 x 10^4 yr from the stellar explosion. Sputtering by the hot gas induces a shift of the dust size distribution towards smaller grains. The resulting dust extinction curve shows a good agreement with that derived by observations of a reddened QSO at z =6.2. Stochastic heating of small grains leads to a wide distribution of dust temperatures. This supports the idea that large amounts (~ 0.1 M_sun) of cold dust (T ~ 40K) can be present in SN remnants, without being in conflict with the observed IR emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call