Abstract

We have mapped the 1300 μm dust emission of a 6' × 16' field in the OMC-2 and -3 region and detected an extended filamentary structure with at least 11 embedded condensations in OMC-2 and 10 in OMC-3. Six have been observed previously at 1300 μm, and two were also detected by IRAS. We observed eight of the new sources at six wave bands from 350 to 2000 μm and derived upper limits for their far-infrared (FIR) emission from the IRAS raw data. The millimeter/submillimeter emission originates from cold dust (Td ~ 20 K), and the individual components have gas masses of 5 M☉ < Mgas < 36 M☉. The ratio Lbol/Lsmm is below 70 for six sources associated with OMC-3, indicating that they are class 0-type objects. Condensations in the OMC-2 region have Lbol/Lsmm ≤ 360, suggesting an evolutionary effect from north to south. We report the discovery of a highly collimated bipolar CO outflow, most likely driven by the source OMC-3 MMS 8. The flow is over 5' (0.7 pc) long and less than 1' (0.15 pc) wide and is oriented nearly east-west. Less prominent outflows are associated with OMC-2 FIR 2/3 and OMC-3 MMS 6. The 1300 μm continuum emission is confined to a ridge less than 1' wide while the emission in J = 2-113CO, C18O, and CS is between 5' and 10' wide. The continuum emission is displaced toward the eastern side of the molecular ridge that contains it. Most 1300 μm sources lie in or close to line emission peaks. However, not all line emission peaks contain prominent 1300 μm continuum sources. The curved filamentary structure of the large-scale dust and molecular emission is likely the result of compression by the superbubble centered ~25-70 pc further north, plus the impact of energy from the younger 1c subgroup of the Orion OB association, which lies 10-50 pc in front of our mapped region, and by the very recent expansion of the NGC 1977 and M42 H II regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.