Abstract

To mitigate the impact of dust on human health and the environment, it is crucial to create a model and map that identifies the areas susceptible to dust. The present study focused on identifying dust occurrences in the Bushehr province of Iran between 2002 and 2022 using moderate-resolution imaging spectroradiometer (MODIS) imagery. Subsequently, an ensemble machine learning model was improved to prepare a dust susceptibility map (DSM). The study employed differential evolution (DE), genetic algorithm (GA), and flower pollination algorithm (FPA) - three evolutionary algorithms - to enhance the random forest (RF) ensemble model. A spatial database was created for modeling, including 519 dust occurrence points (extracted from MODIS imagery) and 15 factors affecting dust (Slope, bulk density, aspect, clay, altitude, sand, rainfall, lithology, soil order, distance to river, soil texture, normalized difference vegetation index (NDVI), soil water content, land cover, and wind speed). By utilizing the differential evolution (DE) algorithm, we determined the significance of these factors in impacting dust occurrences. The results indicated that altitude, wind speed, and land cover were the most influential factors, while the distance to the river, bulk density, and soil texture had less impact on dust occurrence. Data were preprocessed using multicollinearity analysis and the frequency ratio (FR) approach. For this research, three RF-based meta-heuristic optimization algorithms, namely RF-FPA, RF-GA, and RF-DE, were created for DSM. The effectiveness prediction of the constructed models by indexes of root-mean-square-error (RMSE), the area under the receiver operating characteristic (AUC-ROC), and coefficient of determination (R2) from best to worst were RF-DE (RMSE = 0.131, AUC-ROC = 0.988, and R2 = 0.93), RF-GA (RMSE = 0.141, AUC-ROC = 0.986, and R2 = 0.919), RF-FPA (RMSE = 0.157, AUC-ROC = 0.981, and R2 = 0.9), and RF (RMSE = 0.173, AUC-ROC = 0.964, and R2 = 0.878). The results showed that combining evolutionary algorithms with an RF model improves the accuracy of dust susceptibility modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call