Abstract

We combine H-alpha emission-line and infrared continuum measurements of two samples of nearby galaxies to derive dust attenuation-corrected star formation rates (SFRs). We use a simple energy balance based method that has been applied previously to HII regions in the Spitzer Infrared Nearby Galaxies Survey (SINGS), and extend the methodology to integrated measurements of galaxies. We find that our composite H-alpha+IR based SFRs are in excellent agreement with attenuation-corrected SFRs derived from integrated spectrophotometry, over the full range of SFRs (0.01 -- 80 solar mass per year) and attenuations (0 -- 2.5 mag) studied. We find that the combination of H-alpha and total infrared luminosities provides the most robust SFR measurements, but combinations of H-alpha measurements with monochromatic luminosities at 24 micron and 8 micron perform nearly as well. The calibrations differ significantly from those obtained for HII regions (Calzetti et al. 2007), with the difference attributable to a more evolved population of stars heating the dust. Our results are consistent with a significant component of diffuse dust (the `IR cirrus' component) that is heated by a non-star-forming population. The same methodology can be applied to [OII]$\lambda$3727 emission-line measurements, and the radio continuum fluxes of galaxies can be applied in place of IR fluxes when the latter are not available. We assess the precision and systematic reliability of all of these composite methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.