Abstract

A rigorous theoretical investigation has been made on dust-acoustic (DA) shock structures in an unmagnetized dusty plasma system whose constituents are negatively charged cold mobile dust fluid, electrons following Boltzmann distribution, and positively charged ions of two distinct temperatures following nonextensive ( $q$ ) and nonthermal distributions, respectively. In this paper, the Burgers’ equation has been derived by employing reductive perturbation technique which is valid for small but finite amplitude limit. It is observed that both the nonextensive and nonthermal ions of two distinct temperatures and dust kinematic viscosity significantly modify the basic properties (amplitudes, width, and polarities) of the DA shockwaves (DASHWs). The effects of low (high) temperature ions following nonextensive (nonthermal) and dust kinematic viscosity on DASHWs are examined both analytically and numerically. The implications of these results to some astrophysical environments and space plasmas (e.g., stellar polytropes, peculiar velocity distributions of galaxies, and collisionless thermal plasma), and laboratory dusty plasma systems are briefly mentioned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call