Abstract
Localization is a key issue in wireless sensor networks. The geographical location of sensors is important information that is required in sensor network operations such as target detection, monitoring, and rescue. These methods are classified into two categories, namely range-based and range-free. Range-based localizations achieve high location accuracy by using specific hardware or using absolute received signal strength indicator (RSSI) values, whereas range-free approaches obtain location estimates with lower accuracy. Because of the hardware and energy constraints in sensor networks, RSSI offers a convenient method to find the position of sensor nodes. However, in the presence of channel noise, fading, and attenuation, it is not possible to estimate the actual location. In this paper, we propose an RSSI-based localization scheme that considers the trend of RSSI values obtained from beacons to estimate the position of sensor nodes. Through applying polynomial modeling on the relationship between received RSSI and distance, we are able to locate the maximum RSSI point on the anchor trajectory. Using two such trajectories, the sensor position can be determined by calculating the intersection point of perpendiculars passing through the maximum RSSI point on each trajectory. In addition, we devised schemes to improve the localization method to perform under a variety of cases such as single trajectory, unavailability of RSSI trends, and so. The advantage of our scheme is that it does not rely on absolute RSSI values and hence, can be applied in dynamic environments. In simulations, we demonstrate that the proposed localization scheme achieves higher location accuracy compared with existing localization approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.