Abstract

Neonatal administration of estradiol-17beta (E2-17beta) increases the nuclear DNA content in the mouse reproductive tract. Similar responses have been demonstrated for synthetic estrogens such as diethylstilbestrol. One of the questions raised regarding environmental estrogens such as organochlorines is whether they are potent enough to result in abnormal changes such as those demonstrated by both natural and synthetic estrogens. To test this hypothesis, female BALB/c mice were treated neonatally (days 1-5) with either E2-17beta or estradiol-17alpha (E2-17alpha), an inactive stereoisomer in adult reproductive tissues. We also proposed whether neonatal administration of (E2-17alpha) was tumorigenic and whether the effects were age dependent. To answer these questions, one set each of 10 day-old treated and control mice received short-term secondary administration of E2-17beta, E2-17alpha, or cholesterol. Cervicovaginal tracts from intact BALB/c mice were examined histologically and by flow cytometry at 70 days of age and by histology alone at 18 to 22 months of age. The results include several important findings: a) like E2-17beta, neonatal E2-17alpha treatment induced persistent vaginal cornification, hypospadias, vaginal concretions, and hyperproliferation in nearly 100% of the animals regardless of the secondary treatment for most groups; b) neonatal E2-17alpha treatment increased the nuclear DNA content of cervicovaginal epithelium at one-half both the level (mean DNA index of 1.02 vs 1.04) and incidence (22 vs 46% of the animals) of E2-17beta; c) short-term secondary treatment with E2-17alpha, unlike E2-17beta, did not significantly augment the increase in DNA content (13% for E2-17alpha vs 37 and 56% for control and E2-17beta, respectively); and d) neonatal administration with E2-17alpha induced adenosquamous tumors in the reproductive tract in 25% of the animals. Therefore, the biological effects (estrogenic potency) of E2-17alpha may be age dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.