Abstract
AbstractWe derive identities between determinants whose entries are Hermite polynomials. These identities have a combinatorial interpretation in terms of Maya diagrams, partitions and Durfee rectangles, and serve to characterize an equivalence class of rational Darboux transformations. Since the determinants have different orders, we analyze the problem of finding the minimal order determinant in each equivalence class, and describe the solution using an elegant graphical interpretation. The results are applied to provide a more efficient representation for exceptional Hermite polynomials and for rational solutions of the Painlevé IV equation. The latter are expressed in terms of the Okamoto and generalized Hermite polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.