Abstract

PurposeAlthough surgical treatment of drug-resistant mesial temporal lobe epilepsy (MTLE) has proven efficacy, surgical referrals are often delayed. Knowledge of the abnormalities of mesolimbic structures beyond the hippocampus may be important for patients with MTLE because of its usefulness in the understanding of progressive disabilities in affected structures. This study aimed to identify volume and shape changes of mesolimbic structures in surgically treated patients with unilateral MTLE and their correlation with various clinical parameters. MethodsTwenty-four patients with unilateral MTLE (12 with left MTLE [LMTLE] and 12 with right MTLE [RMTLE]) who were surgically treated with standard temporal lobectomy, including amygdalohippocampectomy, and 24 age- and sex-matched healthy individuals were enrolled. Preoperatively, volumetric analysis using magnetic resonance imaging (MRI) of 27 mesolimbic substructures (11 from each hemisphere and 5 from the midline) was performed. We also investigated the three-dimensional morphometric differences of the mesolimbic structures between the unilateral MTLE and control groups using shape analyses. ResultsPatients with LMTLE showed significant volume reductions in various ipsilateral mesolimbic (72.7%, 8/11) and contralateral structures (27.3%, 3/11). Patients with RMTLE had also significant reduced volumes in ipsilateral (63.6%, 7/11) and contralateral structures (73.3%, 3/11). Among the clinical parameters, only the duration of epilepsy had a statistically significant inverse correlation with the volumes of the hippocampus, parahippocampus, entorhinal cortex, cingulate, and corpus callosum. In the shape analysis of the bilateral hippocampus, amygdala, parahippocampus, and entorhinal cortex, after accounting for the effects of age and total intracranial volume, significant shape changes in the anterolateral area of the ipsilateral hippocampus were noted, which corresponds to the cornu ammonis (CA)1 and subiculum of the hippocampus. ConclusionsThe extensive volume reductions in the multiple mesolimbic structures and the substantial inverse correlation between the duration of epilepsy and the volumes of the various mesolimbic structures in our study supports that MTLE is not restricted to the hippocampus, but it progressively involves extensive mesolimbic structures. The duration-dependent atrophic changes in multiple subcortical structures seen in this study also suggest a positive role of early surgical intervention for patients with drug-resistant TLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.