Abstract

To assess the impact of adenosine on quantitative myocardial blood flow (MBF) in a rapid stress-rest protocol compared to a rest-stress protocol using 13N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) and to gain insights into the time dependency of such effects. Quantitative MBF at rest (rMBF), during adenosine-induced stress (sMBF) and myocardial flow reserve (MFR) were obtained from 331 retrospectively identified patients who underwent 13N-ammonia PET-MPI for suspected chronic coronary syndrome and who all exhibited no perfusion defects. Of these, 146 (44.1%) underwent a rapid stress-rest protocol with a time interval (Δtstress-rest) of 20 ± 4 minutes between adenosine infusion offset and rest-imaging, as per clinical routine. The remaining 185 (55.9%) patients underwent a rest-stress protocol and served as the reference. Groups did not differ regarding demographics, risk factors, medication, left ventricular function, and calcium scores. rMBF was significantly higher in the stress-rest vs. the rest-stress group (0.80 [IQR 0.66-1.00] vs. 0.70 [0.58-0.83] ml·min-1·g-1, p < 0.001) and, as sMBF was identical between groups (2.52 [2.20-2.96] vs. 2.50 [1.96-3.11], p = 0.347), MFR was significantly lower in the stress-rest group (3.07 [2.43-3.88] vs. 3.50 [2.63-4.10], p < 0.001). There was a weak correlation between Δtstress-rest and rMBF (r = -0.259, p = 0.002) and between Δtstress-rest and MFR (r = 0.163, p = 0.049), and the proportion of patients with abnormally high rMBF was significantly decreasing with increasing Δtstress-rest. Intravenously applied adenosine induces a long-lasting hyperemic effect on the myocardium. Consequently, rapid stress-rest protocols could lead to an overestimation of rMBF and an underestimation of MFR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call