Abstract

This study investigated changes in finger circulation after different durations of exposure to hand-transmitted vibration. Finger skin temperature (FST), finger blood flow (FBF), and finger systolic blood pressure (FSBP) were measured in the middle fingers of both hands of 10 healthy men. Finger vascular resistance was also estimated. The right hand was exposed for 7.5, 15, and 30 minutes (static load 10 N) to 125-Hz vibration (root-mean-square acceleration 87 m/s2). Static load only was used as a control. Finger circulation was measured before the vibration and static load exposure and at fixed intervals during exposure and a 45-minute recovery period. No significant changes were found with the static load. The FST and FSBP did not change significantly during vibration exposure, whereas vibration produced significant reductions in FBF and increases in vascular resistance at each duration when compared with preexposure and contralateral (non-vibrated) finger values. Temporary vasodilation occurred in the vibrated finger immediately after each vibration exposure. Recovery was complete for FBF and vascular resistance after the 7.5-minute vibration, whereas a progressive FBF reduction occurred in both the vibrated and the nonvibrated fingers after 15- and 30-minute exposure. The longer the duration of vibration exposure, the stronger the vasoconstriction in the vibrated finger during recovery. Vasoregulatory mechanisms mediated by both intrinsic (local) and extrinsic (neural or endocrine) control systems seem to be related to digital circulatory changes during 125-Hz vibration. It is concluded that, not only the frequency and magnitude of vibration, but also its duration contributes to the reaction of the digital vessels to acute vibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.