Abstract
Lobate scarps, landforms interpreted as the surface manifestation of thrust faults, are widely distributed across Mercury and preserve a record of its history of crustal deformation. Their formation is primarily attributed to the accommodation of horizontal shortening of Mercury's lithosphere in response to cooling and contraction of the planet's interior. Analyses of images acquired by the Mariner 10 and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during flybys of Mercury showed that thrust faults were active at least as far back in time as near the end of emplacement of the largest expanses of smooth plains. However, the full temporal extent of thrust fault activity on Mercury, particularly the duration of this activity following smooth plains emplacement, remained poorly constrained. Orbital images from the MESSENGER spacecraft reveal previously unrecognized stratigraphic relations between lobate scarps and impact craters of differing ages and degradation states. Analysis of these stratigraphic relations indicates that contraction has been a widespread and long-lived process on the surface of Mercury. Thrust fault activity had initiated by a time near the end of the late heavy bombardment of the inner solar system and continued through much or all of Mercury's subsequent history. Such deformation likely resulted from the continuing secular cooling of Mercury's interior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.