Abstract

In an effort to develop durable, corrosion-resistant catalyst support materials for polymer electrolyte fuel cells, modified polymer-assisted deposition method was used to synthesize tungsten carbide (WC, WC1-x), which was later used as a support material for Pt-based oxygen reduction reaction catalyst, as an alternative for the corrosion-susceptible, carbon supports. The Pt-deposited tungsten carbide's corrosion-resistance, oxygen reduction reaction electrocatalysis, and durability were studied and compared to that of Pt/C. Bulk free carbon was found to be absent from the ceramic matrix which had particle size in the range of 2-25 nm. Tungsten carbide support appears to enhance the oxygen reduction activity on Pt, showing an increase in mass activity (nearly 2-fold at 0.85 V vs RHE) and specific activity (more than 7 times higher), alongside decrease in overpotential, in comparison to Pt/C. A significant increase in durability was also observed with the tungsten carbide-based system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.