Abstract
This study focuses on creating a superhydrophobic, durable, and exceptionally transparent coating with dual-scale roughness by naturally formed raspberry-like particles. This approach facilitates the management of surface roughness at both single and dual scales through variations in surface functionalization temperature. We illustrated that adjusting the temperature of organosilanes functionalization on the surface allows for various reactions, such as the direct grafting of metallic precursors or their polymerization on the surface, resulting in the formation of large raspberry-like particles.We investigated the impact of nanoparticle concentration, functionalization duration, and reaction temperature on surface properties. Our results reveal that a concentration of 1.5 % SiO2 nanoparticles, combined with surface functionalization using TCMS for 4 h at 3 °C, provides the optimal conditions for creating a surface that combines superhydrophobicity, transparency, and acceptable durability. The resulting surface exhibits an impressive contact angle of 158.9°, a sliding angle of 2°, and a transmittance rate of 82 %.Furthermore, the coating demonstrates remarkable resistance to abrasion for up to 35 cycles and can withstand temperatures up to 280 °C. It also offers enhanced protection against UV radiation for 50 h and improved resistance to sand abrasion for up to 30 s, enduring bombardment pressures of up to 6 bars. Moreover, the coating presents several advantages in terms of surface cleaning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.