Abstract

To improve the durability of the photobioreactor antibiofouling surface for microalgal cultivation, a series of photoreactive poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were successfully synthesized and used to modify ethylene-vinyl acetate (EVA) films by a surface coating and UV light grafting method. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy analysis (XPS) and fluorescence microscopy results indicated that PTFEMA were fixed successfully onto the EVA film surface through a covalent bond. During the microalgal adhesion assay, the number of EVA-PTFEMA film-adhered microalgae was 41.4% lower than that of the EVA film. Moreover, the number of microalgae attached to the EVA-PTFEMA film decreased by 61.7% after cleaning, while that of EVA film decreased by only 49.1%. It was found that the contact angle of EVA-PTFEMA film surface increased, and remained stable when immersed in acid and alkali solution for up to 90 days. HIGHLIGHTS Durable photobioreactor antibiofouling surfaces for microalgal cultivation were prepared successfully. The contact angle of antibiofouling coating surface remained stable in acid and base environment for 90 days. The attached microalgae on antibiofouling surface decreased 41.4% than those of unmodified surface. The attached microalgae on antibiofouling surface could be cleaned by 61.7% through changing the flow velocity of microalgal suspension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.