Abstract
Perfluorosulfonic acid (PFSA) electrolyte heat-treated at elevated glass transition temperature ( T g, 140–290 °C) with alkaline metal ions as the sulfonic group protector have been used to prepare stable PFSA/polytetrafluoroethylene (ePTFE) polymer electrolyte membrane for fuel cells. Thermal mechanical analysis (TMA) and X-ray diffraction results revealed that the PFSA resin with alkaline metal ions (Li, Na, and K) exhibits a significant increase of T g, as well as an improved crystalline structure after heat treatment at T g. Resin solubility measurement indicated the heat-treated PFSA show a better solvent resistance which favors membrane stability. The effect of ionic modification on PFSA/ePTFE composite PEMs performances, such as gas crossover, shrinkage stress, proton conductivity, and mechanical properties has been investigated in details. In general, the heat-treated PFSA/ePTFE composite PEMs showed lower dissolved fraction in water–alcohol solvents and better dimensional stability. The increased heat-treated temperature also enhanced the membrane performance because of the improved interface compatibility between PFSA resin and PTFE. The PFSA/ePTFE membrane prepared from heat-treated PFSA in Na-form at 290 °C ( T g of Na-form PFSA) increased the performance up to 0.744 V@600 mA cm −2, significantly higher than those of other PEMs because of the T g of Na-PFSA were close to the T g of PTFE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.