Abstract

Heterogeneous photocatalysis provides a promising strategy to generate renewable fuels by harnessing solar energy. Metal heteroanionic photocatalysts have gained attention for their visible-light absorption; however, they are also plagued by photocorrosion, which limits their long-term use. Such photocorrosion occurs from photooxidation of the less electronegative nonoxide ions, leading to decomposition of the material's lattice. In this Perspective, we highlight emerging strategies to develop durable metal heteroanionic photocatalysts. We devote attention to the approaches taken for model metal oxynitrides, oxysulfides, and oxyhalide photocatalysts to provide a holistic framework. This analysis emphasizes the vital roles that interface engineering, charge carrier extraction, and crystal and electronic structure play in providing photodurability. We believe that through these approaches, durable and visible-light-absorbing artificial photosynthetic systems can be developed for a sustainable future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.