Abstract

Recently, lubricant-infused surfaces (LIS) have emerged as a prominent class of surface technology for antifouling, anti-icing and anticorrosion applications. However, long-term corrosion exposure and mechanical damages may deteriorate the practical performance of LIS during application. In this study, a robust LIS was fabricated by the vacuum impregnation of mineral oil into anodized aluminum oxide (AAO) nanochannels with a depth of 50 μm. The impregnation of the lubricant through the entire depth of the high-aspect-ratio nanochannels was visualized under cryo-scanning electron microscopy (cryo-SEM) and also confirmed by weight gain measurements. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) tests showed that the lubricant stored in the deep nanochannels of LIS can provide excellent corrosion protection during long-term immersion. Furthermore, the as-prepared LIS demonstrated superior resistance to mechanical damage due to a self-healing effect by the lubricant. As shown by cryo-SEM observation and PDP tests, the micro-cracks formed on the LIS can be instantaneously repaired by the in-flow of the oil from the surrounding surface. In the tribological tests, the LIS also presented high wear resistance and superior mechanical durability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.