Abstract

AbstractK‐metal batteries have become one of the promising candidates for the large‐scale energy storage owing to the virtually inexhaustible and widely potassium resources. The uneven K+ deposition and dendrite growth on the anode causes the batteries prematurely failure to limit the further application. An integrated K‐metal anode is constructed by cold‐rolling K metal with a potassiphilic porous interconnected mediator. Based on the experimental results and theoretical calculations, it demonstrates that the potassiphilic porous interconnected mediator boosts the mass transportation of K‐metal anode by the K affinity enhancement, which decreases the concentration polarization and makes a dendrite‐free K‐metal anode interface. The interconnected porous structure mitigates the internal stress generated during repetitive deposition/stripping, enabling minimized the generation of electrode collapse. As a result, a durable K‐metal anode with excellent cycling ability of exceed 1, 000 h at 1 mA cm−2/1 mAh cm−2 and lower polarization voltage in carbonate electrolyte is obtained. This proposed integrated anode with fast K+ kinetics fabricated by a repeated cold rolling and folding process provides a new avenue for constructing a high‐performance dendrites‐free anode for K‐metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call