Abstract
Superhydrophobic surfaces with low adhesion have attracted great attention in recent years owing to their extensive applications. Enlightened by multifunctional rice leaves, a micro/nanobinary structured superhydrophobic surface was successfully fabricated on the Ti6Al4V substrate by photoetching, acid etching, alkaline etching, as well as fluorination treatments. Water droplets exhibited a Cassie impregnating wetting state on this superhydrophobic surface, under which the contact area fraction of the liquid-air interface caused by primary micron-scale stripped bumps (fp) and secondary nanoflower-like structures (fs) were calculated for the first time. The water adhesion force of this nonwetting surface was precisely measured as 7 μN, which was much lower than that (362 μN) of the original flat substrate and the previous reported surfaces. Moreover, this low-adhesive surface displayed good chemical stability after exposing to air, soaking in aqueous solutions (acid, alkaline, and salt), and cyclic icing/melting treatment. It also showed good mechanical durability after a series of abrasion treatments. Besides, this multifunctional superhydrophobic surface exhibited superior antipollution property to different kinds of contaminants. This multifunctional superhydrophobic surface displays a huge potential for industrial droplet transportation and self-cleaning applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.