Abstract

The driving force behind supercapacitor research is to enhance the energy density (E) to the level of Li-ion batteries, and achieving high power density (P). This task is accomplished by using nanocomposites of polyaniline (PANI) and Ni(OH)2 (PN) as the electrode material for supercapacitors. These nanocomposites were synthesized using acetic acid (PN - AA) (PANI 75% and Ni(OH)2 25%) and methane sulphonic acid (PN - MSA) (PANI 83.33% and Ni(OH)2 16.67%) as dopants for PANI through an in-situ single-step method. The PN – MSA exhibited higher energy storage characters than PN – AA with 1 M H2SO4 (SA) as electrolyte. PN - MSA exhibited high-energy characteristics, including a specific capacitance (Cs) of 735.29 F g‒1, an energy density (E) of 147.05 W h kg‒1 (comparable to Li-ion batteries), and a power density (P) of 2.3466 kW kg‒1 at 1 A g‒1. In addition, it also exhibited an exceptional cyclic stability up to 58,800 cycles at 0.4 V s‒1. The energy characters of PN-AA are also substantially high and are a Cs of 641.02 F g‒1, an E of 128.20 W h kg‒1 (in the same order of Li-ion batteries), a P of 2.0385 kW kg‒1 at 1 A g‒1 and a cyclic stability up to 18,400 cycles was also obtained at 0.4 V s‒1. Both PN - AA and PN - MSA demonstrated an impressive feature of an increase in energy storage with an increase in the number of charge/discharge cycles. PN - MSA exhibited an improvement in energy storage characteristics of up to 44% when a mixture of sulphuric acid and methane sulphonic acid with concentrations of 1 M and 0.33 M, respectively, was used as an electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call