Abstract

It is highly challenging to prepare durable and chemical resistant ultra-permeable membranes that can quickly separate small organic molecules like dye or inorganic salt in the complex textile wastewater industry. Here, side-chain sulfonated poly(ether ether ketone) (SPEEK) was synthesized and prepared the poly(ether ether ketone) (PEEK) - SPEEK nanofiltration (NF) membrane by a simple dipping coating and heat treatment. Single component filtration tests of the optimized membrane showed ultrahigh pure water flux (126 Lm−2 h−1 bar−1) and relatively low NaCl rejection (6.7%). Moreover, the negatively charged membrane exhibited excellent rejection of 98.8% toward Congo red (CR). The pure water flux was about 9 folds than that of commercial NF270 with comparable solutes rejection. The separation tests of CR and NaCl mixed solution at optimized conditions exhibited ultra-high permeation flux (34 Lm−2 h−1 bar−1), satisfactory dye (98.8%)/salt (< 10%) rejection and the separation performance remained stable after 10 cycles. Finally, the contaminated membrane was washed with ethanol, the permeation flux and the CR rejection remained constant after several cycles, while the commercial NF1 membrane exhibited serious swelling only within one cycle. The prepared membrane exhibited good organic solvents resistance and antifouling properties. Thus, this work confirmed the PEEK-SPEEK NF membrane showed great potential in the sustainable treatment of textile wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.