Abstract

Coir (Cocos nucifera) is a natural fibre known to retain its strength and resist biodegradation far better than other industrial natural fibres. However, systematic studies in this discipline are scarce. Geotextiles are usually exposed to diverse pH, salinity, moisture, and microbial association conditions. In the present work, specific surface modifications of coir geotextiles using a natural agent (cashew nut shell liquid) have been carried out to enhance their long-term performance depending on the end applications. The modified and unmodified geotextiles were subjected to acidic, alkaline, and neutral pH conditions, saline conditions, alternate wetting and drying cycles, and thermal cycles for the assessment of their durability, measured in terms of tensile strength. In situ soil burial studies in a tropical climate were conducted in specially prepared soil to follow the biodegradation behaviour of geotextiles at various depths. The surface-modified geotextiles were found to resist adverse chemical, physical, and biological conditions much better than the unmodified geotextiles. Alkaline conditions marginally accelerated the degradation rates when compared to acidic environments. The saline conditions, as well as alternate wetting and drying conditions, resulted in marginal loss of tensile strength (<7%). The surface-modified geotextiles buried within lower depths of soil under field conditions retained 70–80% of their initial tensile strength after 12 months, whereas the unmodified geotextiles lost 88% strength in four months. The positive impact of surface modification on durability is confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The results indicate the excellent potential of suitably surface-modified coir geotextiles for long-term use in adverse conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.