Abstract
In this work, a series of durability requirements are proposed for the construction of long-service-life reinforced concrete (RC) structures in a coastal environment with extreme atmospheric corrosivity. RC specimens were exposed in a coastal outdoor site in Cuba for three years. Carbon steel corrosion evaluation revealed an annual average atmospheric corrosion rate over the maximum limit established (ISO 9223:2012) for extreme (CX) atmospheric corrosivity. The service life of the RC structures, considered as the sum of the time-to-corrosion-initiation and time-to-corrosion-induced concrete cracking, was determined as a function of durability requirements. The most important durability requirements to achieve a long service life (>70 years) in RC structures subjected to a CX corrosivity category were defined as follows: water/cement ratio, compressive strength, percentage of effective capillary porosity, and concrete cover thickness. Under these hostile environments, the expansion of the corrosion products formed on the reinforcement steel and the induced cracking of the concrete could be attributed partially to the formation of the akaganeite phase in reinforcement steel, which revealed a different morphology compared to the akaganeite typically formed in bare carbon steels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.